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BS and oxBS Data

In Tables S1, S2 we show the data for the DNA loci L1mdA, L1mdT, IAP, mSat, MuERVL, Afp, Ttc25,
Zim3 and Snrpn taken from bisulfite and oxidative bisulfite sequencing together with the measured
conversion errors c̄, d̄, ē and f̄ for each locus. The conversion errors are calculated using the hairpin
linker which is ligated onto the DNA1. A more detailed description of the conversion errors’ calculation is
given in Section 4.1. The measurement times are: 24h after incubation on Serum (day0), and 24h (day1),
72h (day3) and 144h (day6) on 2i. Each table shows the total number of CpGs of the corresponding
locus that have been observed in each of the four observable states (TT, TC, CT and CC) for every day
of measurerement.

Estimation of model parameters

Initial distribution of the hidden states

Let π(0) be the unknown initial distribution of the hidden states and let π(i, t) = P (X (t) = i) represent
the entry of π(t) that corresponds to state i ∈ S. In addition, denote by nbs(j, t) and nox(j, t) the number
of times that state j ∈ Sobs has been observed during independent BS and oxidative BS measurements
at time t.

We want to solve the problem: π(0)∗ = arg maxπ(0) L1(π(0)), subject to the constraint
∑
i∈S π(i, 0) =

1, where

L1(π(0)) =
∏

j∈Sobs

πbs(j, 0)nbs(j,0) · πox(j, 0)nox(j,0).

We consider the log-likelihood

logL1(π(0)) =
∑
j∈Sobs

nbs(j, 0) · log πbs(j, 0) + nox(j, 0) · log πox(j, 0)).

For a gradient descent optimization procedure we need its derivative w.r.t. π(0) given by

d

dπ(0)
logL1(π(0)) =

∑
j∈Sobs

nbs(j, 0) ·
d

dπ(0)πbs(j, 0)

πbs(j, 0)
+ nox(j, 0) ·

d
dπ(0)πox(j, 0)

πox(j, 0)
.

1For Snprn we had to use a hairpin linker without 5mC or 5hmC and therefore could not calculate the sample specific
conversion error. Instead we applied the mean errors of all other loci analyzed in this study.
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Let πbs(t), πox(t) be the vectors with entries πbs(j, t), πox(j, t), ∀j ∈ Sobs,∀t ∈ Tobs. Writing the
derivatives d

dπ(0)πbs(j, 0) and d
dπ(0)πox(j, 0) in vector-matrix notation we get

d

dπ(0)
πbs(0) =

d

dπ(0)
π(0) ·Ebs(0) = Ebs(0),

d

dπ(0)
πox(0) =

d

dπ(0)
π(0) ·Eox(0) = Eox(0),

which gives us the gradient of the log-likelihood function w.r.t. the initial distribution of the hidden
states after insertion into the above equation.

Estimation of the efficiencies

Let v = (βµm

0 , βµm

1 , βµd

0 , βµd

1 , βη0 , β
η
1 , p), be the vector of the seven unknown parameters where µm stands

for maintenance, µd for de novo and η for hydroxylation efficiency, while p is the probability that 5hmC
is not considered during maintenance. Recall that we assume that the efficiencies are linear functions of
time and so v contains the coefficients of these functions. E.g. µm(t) = βµm

0 + t · βµm

1 . The transition
matrix of the discrete Markov chain at time unit t is P(t) = D(t) ·M(t) ·H(t), where

D(t) =



uu um mu uh hu hm mh mm hh

uu 1 0 0 0 0 0 0 0 0
um 1/2 1/2 0 0 0 0 0 0 0
mu 1/2 0 1/2 0 0 0 0 0 0
uh 1/2 0 0 1/2 0 0 0 0 0
hu 1/2 0 0 0 1/2 0 0 0 0
hm 0 1/2 0 0 1/2 0 0 0 0
mh 0 0 1/2 1/2 0 0 0 0 0
mm 0 1/2 1/2 0 0 0 0 0 0
hh 0 0 0 1/2 1/2 0 0 0 0


,

M(t)



uu um mu uh hu hm mh mm hh

uu µ̄2
d µd ·µ̄d µd ·µ̄d 0 0 0 0 µ2

d 0
um 0 λ̄ 0 0 0 0 0 λ 0
mu 0 0 λ̄ 0 0 0 0 λ 0
uh 0 0 0 p ·µ̄d+p̄·λ̄ 0 0 p·µd+p̄·λ 0 0
hu 0 0 0 0 p·µ̄d+p̄·λ̄ p·µd+p̄·λ 0 0 0
hm 0 0 0 0 0 1 0 0 0
mh 0 0 0 0 0 0 1 0 0
mm 0 0 0 0 0 0 0 1 0
hh 0 0 0 0 0 0 0 0 1


and

H(t) =



uu um mu uh hu hm mh mm hh

uu 1 0 0 0 0 0 0 0 0
um 0 η̄ 0 η 0 0 0 0 0
mu 0 0 η̄ 0 η 0 0 0 0
uh 0 0 0 1 0 0 0 0 0
hu 0 0 0 0 1 0 0 0 0
hm 0 0 0 0 0 η̄ 0 0 η
mh 0 0 0 0 0 0 η̄ 0 η
mm 0 0 0 0 0 η · η̄ η · η̄ η̄2 η2

hh 0 0 0 0 0 0 0 0 1


.

Note that for D(t) we can omit the time parameter t since it is time-independent.
Given, now, π(0), we want to compute the maximum likelihood estimator (MLE) v∗ = argmaxv logL2(v),

where
L2(v) =

∏
t∈Tobs\{0}

∏
j∈Sobs

πbs(j, t)
nbs(j,t) · πox(j, t)nox(j,t).

2



bisulfite sequencing ox. bisulfite sequencing

TT TC CT CC TT TC CT CC

uu c2 c · c̄ c · c̄ c̄2 c2 c · c̄ c · c̄ c̄2

um c · d̄ c · d c̄ · d̄ c̄ · d̄ c2 c · c̄ c · c̄ c̄2

mu c · d c̄ · d̄ c · d c̄ · d c · d̄ c̄ · d̄ c · d c̄ · d
uh c · ē c · e c̄ · ē c̄ · e c · f c · f̄ c̄ · f c̄ · f̄
hu c · ē c̄ · ē c · e c̄ · e c · f c̄ · f c · f̄ c̄ · f̄
hm d̄ · ē d · ē d̄ · e d · e d̄ · f d · f d̄ · f̄ d̄ · f
mh d̄ · ē d̄ · e d · ē d · e d̄ · f d̄ · f̄ d · f d̄ · f
mm d̄2 d̄ · d d · d̄ d2 d̄2 d̄ · d d · d̄ d2

hh ē2 ē · e e · ē e2 f2 f · f̄ f · f̄ f̄2

Table A: Transition probabilities from hidden to the observable states in BS and in oxBS.

The only constraint for the above problem is that the efficiencies should be probabilities for all the
considered time points, i.e., 0 ≤ β0 + β1 · t ≤ 1, ∀t ∈ {0, 6} for all the efficiencies, and the same
constraint holds for p, i.e., 0 ≤ p ≤ 1.

It holds

logL2(v) =
∑

t∈Tobs\{0}

∑
j∈Sobs

nbs(j, t) · log πbs(j, t) + nox(j, t) · log πox(j, t)

and we get the score vector of the log-likelihood function as

d

dv
logL2(v) =

∑
t∈Tobs\{0}

∑
j∈Sobs

nbs(j, t) ·
d
dvπbs(j, t)

πbs(j, t)
+ nox(j, t) ·

d
dvπox(j, t)

πox(j, t)
.

Then the matrix-vector form of the derivatives d
dvπbs(j, t) and d

dvπox(j, t) can be written as

d

dv
πbs(t) =

d

dv
π(t) ·Ebs(t) and

d

dv
πox(t) =

d

dv
π(t) ·Eox(t), ∀t ∈ Tobs,

where the entries of the emission matrices Ebs(t) and Eox(t) are given in Table A.
Considering, now, the forward Kolmogorov equation for the discrete Markov chain and its derivative

w.r.t. the parameters it suffices to simultaneously solve the following two equation systems.

π(t) = π(t− 1) ·P(t)

d

dv
π(t) =

d

dv
π(t− 1) ·P(t) + π(t− 1)

d

dv
P(t), ∀t ≥ 1 (1)

with d
dvπ(0) = 0 and π(0) = π(0)∗. The derivative of the transition matrix is

d

dv
P(t) =

d

dv
(D ·M(t) ·H(t)) = D ·

( d

dv
M(t) ·H(t) + M(t) · d

dv
H(t)

)
E.g. applying the chain rule and writing µm instead of µm(βµm

0 , βµm

1 , t) we get

d

dβµm

0

M(µm) =
d

dµm
M(µm) · d

dβµm

0

µm =
d

dµm
M(µm)

and
d

dβµm

1

M(µm) =
d

dµm
M(µm) · d

dβµm

1

µm =
d

dµm
M(µm) · t.
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In the same way we get the first derivatives w.r.t. all the other components of parameter vector
v. Applying once more the product rule in Eq. (1), and using similar arguments as above we can also
compute the second partial derivatives d

dvidvj
logL2(v) which will give us the (i, j)-th entry of the

Hessian matrix H = ∇∇T logL2(v).

Standard deviations and confidence intervals

The observed Fisher information is defined as J (v∗) = −H(v∗), where v∗ is the maximum likelihood
estimator. The expected Fisher information is I(v) = E[J (v)] and its inverse is a lower bound for
the covariance matrix of the MLE. Thus, here we approximate the standard deviations of the estimates
as σ(v∗) =

√
Var(v∗) =

√
diag(−H−1

(v∗)). In order to approximate the standard deviations of the
efficiencies over time, i.e. σ(µm(t)), σ(µd(t)) and σ(η(t)), we exploit the fact that if f(t) = β0 + β1 · t
then Var(f(t)) = Var(β0 + β1 · t) = Var(β0) + t2Var(β1) + 2tCov(β0, β1).

Given, now, the variances of the estimated efficiencies we can compute the variance λ(t), for any t as

Var(λ) = Var(µm) + Var(µd) + 2Cov(µm, µd) + Var(µmµd)− 2Cov(µm, µmµd)− 2Cov(µm, µmµd),

where the last four terms are computed as follows:

Cov(µm, µd) = Cov(βµm

0 , βµd

0 ) + tCov(βµm

0 , βµd

1 ) + tCov(βµm

1 , βµd

0 ) + t2Cov(βµm

1 , βµd

1 ),

and
Var(µmµd) = E[µ2

mµ
2
d]− E[µmµd]2 (2)

Cov(µm, µmµd) = E[µ2
mµd]− E[µm]E[µmµd], (3)

Cov(µd, µmµd) = E[µ2
dµm]− E[µd]E[µmµd] (4)

Since the MLEs are approximately normally distributed and for any two random variables X,Y , E[XY ] =
Cov(X,Y) + E[X]E[Y], we get

E[µ2
mµd] = E[µm]2E[µd] + Var(µm)E[µd] + 2Cov(µm, µd)E[µm]

E[µ2
dµm] = E[µd]

2E[µm] + Var(µd)E[µm] + 2Cov(µm, µd)E[µd]

E[µ2
mµ

2
d] = E[µm]2E[µd]

2 + Var(µm)Var(µd) + Var(µd)µ2
m + Var(µm)E[µd]2

+2Cov(µm, µd)2 + 4Cov(µm, µd)E[µm]E[µd],

where the expectations and thus all terms in Eq. (2) - (4) are now known. Obtaining this way the
standard deviations of all the efficiencies over time one can create the corresponding confidence intervals
for a fixed confidence level, here β = 95% was chosen. For instance the confidence interval for the total
methylation on hemimethylated sites will be

λ± z · σ(λ) = λ± z ·
√

Var(λ),

where z = F−1
(
β+1
2

)
and F is the cummulative distribution function (cdf) of the standard normal

distribution. Similarly we get the confidence intervals for all remaining parameters.

Hypothesis Test

We carried out a number of hypothesis tests related to the estimated parameters (for the results see
Section 3). Here we briefly describe the details of the Wald test which is the one we used here to validate
our results.
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Given a maximum likelihood estimate v∗ of an unknown parameter vector v0 ∈ V ⊆ Rp we want to
test the null hypothesis H0 that g(v0) = 0, where g : Rp → Rr is a vector valued function with r ≤ p.
We define the Wald statistic for this estimate as

w = g(v∗)ᵀ
[
Jg(v

∗) · Σ̂ · Jg(v∗)ᵀ
]−1

g(v∗),

where Jg(v
∗) is the Jacobian of g, i.e., the r× p matrix of the partial derivatives of the entries of g with

respect to the entries of v, and Σ̂ is a consistent estimate of the assymptotic covariance matrix, here
equal to the negative Hessian, of v∗. Note that w here is a realization of a random variable Wv∗ as it is
a function of v∗ which is a random variable itself depending on the observed data.

Under the regularity assumptions that for all v ∈ V, the entries of g are continuously differentiable
w.r.t. all entries of v and that Jg(v) has rank r, the following holds. If the null hypothesis is true, i.e.
g(v0) = 0, then the Wald statistic Wv∗ converges to a Chi-square distribution with r degrees of freedom
[4].

Thus, conducting the Wald test consists of comparing the Wald statistic with a critical threshold
z = F

−1
(1 − a), where F is the cdf of a Chi-square random variable with r degrees of freedom and a

is a predefined significance level, e.g. a = 1%. If w > z then we can safely reject the null hypothesis.
The p-value of the test is the probability p = P (Wv∗ > w) = 1 − P (Wv∗ ≤ w) ≈ 1 − F (w) and so
equivalently one also rejects the null hypothesis if p ≤ a.

For estimates taken from maximum likelihood alternative tests, such as likelihood ratio or score test,
are also possible. The Wald statistic, however, is convenient in case of testing multiple hypotheses in
parallel. In addition, the use of all tests mentioned before for our estimates returned similar p-values and
did not lead to a different result regarding the cases that one rejects H0.

Results

In S3 Table we present the MLEs returned by our global optimization routine for the parameter vector
v and the corresponding vector of standard deviations σ(v), given the data of Section 1 for each of
the nine genome loci. The p-value of the efficiencies µm, µd and η corresponds to the null hypothesis
H0 : β1 = 0, where β1 is the gradient of the corresponding efficiency, and for the total methylation λ
it takes the form H0 : βλ1 = 0 ∧ βλ2 = 0, since λ is a quadratic function of time. The significance level
α for deciding H0 for each of the above parameters has been set to 1%. S4 Table shows the computed
coefficients of the total methylation λ(t), which can be implicitly taken from the maintenance and de
novo estimated coefficients.

In S1 Figure we see the predicted probabilities of the observable states that have been taken using
the estimated values of S3 Table for each region. We compare them to the measured data (transformed
to frequencies) of S1 and S2 Tables at the various days. S2 Figure shows the predicted probabilities of
the hidden states and the detailed hydroxylation levels, as well as the estimated (hydroxy-)methylation
efficiencies over time for the loci IAP, L1mdA, MuERVL, Ttc25 and Snrpn that do not appear in the
manuscript.

From the performed Wald test we found a statistically significant decrease for the de novo, and the
total methylation efficiencies in all nine loci (besides de novo at Ttc25, Zim3 and Snrpn where it is
absent and total methylation in L1mdA). Similarly, the increase of hydroxylation for five out of nine loci
is statistically significant. However, for the maintenance function we have to accept the null hypothesis
in most of the loci (namely all repetitive elements and Afp), that is, we cannot exclude the possibility
that for these loci maintenance is constant over time.

In order to measure the test error of the model we performed leave-one-out cross-validation (LOOCV)
and tested two competing assumptions: 1)“ The enzyme efficiencies are constant” and 2)“ The en-
zyme efficiencies can also be linear”. For each locus we tested the prediction of the model for each
single CpG, having trained it on the data of the other CpGs and we averaged at the end the test
error. For comparing the prediction ability of the model for each of the two cases 1) and 2) we

5



used two different distribution distance measures (Kullback-Leibler divergence and Bhattacharyya dis-
tance) between the data distribution P and the predicted by the model distribution Q. Kullback-

Leibler (KL) divergence is defined as DKL(P ||Q) =
∑
i P (i) log P (i)

Q(i) and the Bhattacharyya distance as

BC(P,Q) = − log
(∑

i

√
P (i)Q(i)

)
, where i goes here over the observable states.

Our results in S5 Table show that for all loci the test error, i.e., the above distance, becomes evidently
smaller for the case where we allow efficiencies to be linear over time. In the two columns where we
report the improvement (“gain”) KL-const - KL-linear

KL-const of the test error, we see that the decrease of the
test error using the linear model over the constant varies from 0.6% (in mSat) to 38.3% (in Zim3) for
the Kullback-Leibler distance. The predictive potential of the model, and consequently the above gain
ratio, depends on the available number of CpGs for the training data and on how much the efficiencies
deviate from constant behavior over time.

In S3 Fig., S4 Fig. we show the (hydroxy-)methylation efficiencies and the (hydroxy-)methylation
levels for all CpGs of all the examined loci, in case the data of each locus is not aggregated and separate
estimations are taken for each of the single CpG dyads. Allthough the absolute (hydroxy-)methylation
levels at distinct CpGs can be slightly different, one observes that the tendency of the demethylation
process has clearly homogeneous characteristics between CpGs of the same locus. Particularly, the
increase of the hydroxylation level in relation to the methylated substrates is always present. Also, the
day with the highest absolute 5hmC level is, in the majority of the cases, the same for the CpGs of a locus.
Similarly, the predicted behavior of the enzymes’ efficiencies within a locus is in principle homogeneous
with some differences in the absolute estimated values that come with larger confidence intervals due to
the smaller number of samples.

Finally, to validate the robustness of the model sensitivity analysis of the parameters has been ex-
amined. Perturbing one parameter at a time (OAT) by ±1% we get a maximum (over all loci, time
points and parameters) absolute change of 0.0053 for the total hydroxylation level and 0.0198 for the
total methylation level.

Hairpin oxidative Bisulfite Sequencing

500 ng of mESC DNA was cleaved with 10 units of restriction enzymes for 5h in a 30 µl reaction. For IAP
L1mdA the DNA was cut with DdeI (New England Biolabs; NEB), for mSat and MuERVL with Eco47I
(Thermo Fisher Scientific), Afp, Ttc25, Zim3 with TaqI (Thermo Fisher Scientific) and in case of Snrpn
with NlaIII (NEB). The restriction was stopped by a 20 min heat inactivation at 80◦C. The restricted
DNA was then subjected to a 16 h or overnight ligation with T4-DNA Ligase (New England Biolabs).
200 units of T4-DNA Ligase, 4 µl 10mM ATP and 1µl 100 µM hairpin linker was added directly into the
restriction reaction and the volume was adjusted to 40 µl using ddH2O. During ligation the hairpin linker
becomes covalent attached to the restriction site of the DNA. Purification and oxidative BS treatment
was carried out using the chemicals and protocols provided by Cambridge Epigenetix. Amplicons were
generated by PCR using Hotfire Taq polymerase from Solis Biodyne. Sequencing was carried out using
the MiSeq Illumina system (paired end sequencing 2x250bp reads). After Sequecning in a first informatics
step the adapter sequence is removed from the reads (Trimming). The resulting read information is then
analyzed analyzed using the BiQAnalyzerHT and a python script. For the repeats the sequences were
filtered by sequence identity score, meaning that only reads which matched the reference sequence to at
least 80% were used for the analysis. For single copy genes this score was set to 90% and in addition
only reads with maximum 10% missing CpG sites were analyzed.

Primer- and Reference sequences

Table B shows the sequence of the nine different hairpin linkers used to covalent link both DNA strands.
We included unmodified cytosine, 5mC(X) and 5hmC(y) into the hairpin linker to follow the conversion of
these modifications during BS and oxBS treatment. Mapping the sequencing information to this reference
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Table B: Sequence of the hairpin linker for Afp, L1mdT, L1mdA, mSat, IAP; M indicates the localization
of 5mC, H the position of 5hmC in the sequence. All hairpin linker carry a 5’-phosphorylation.

Hairpin Linker Sequence
IAP-HP Pho-TNAGGGMCCATDDDDDDDDATGGGHCC
L1mdA-HP Pho-TNAGGGMCCATDDDDDDDDATGGGHCC
L1mdT-HP Pho-CCGGAGGGMCCATDDDDDDDDATGGGHCCT
mSat-HP Pho-GNCGGGMCCATDDDDDDDDATGGGHCC
MuERVL-HP Pho-GNCGGGMCCATDDDDDDDDATGGGHCC
Afp-HP Pho-CGGGGMCCATDDDDDDDDATGGGHCC
Ttc25-HP Pho-CGGGGMCCATDDDDDDDDATGGGHCC
Zim3-HP Pho-CGGGGMCCATDDDDDDDDATGGGHCC
Snrpn-HP Pho-GGGCCTADDDDDDDDTAGGCCCCATG

Table C: Primer for amplification of the analyzed loci after bisulfite and oxidative bisulfite treatment.

Primer Sequence
IAP-HP-Forward TTTTTTTTTTAGGAGAGTTATATTT
IAP-HP-Revers ATCACTCCCTAATTAACTACAAC
L1mdA-HP-Forward GTGAGTGGATTATAGTGTTTGTTTTAA
L1mdA-HP-Revers AAATAAATCACAATACCTACCCCAAT
L1mdT-HP-Forward TGGTAGTTTTTAGGTGGTATAGAT
L1mdT-HP-Revers TCAAACACTATATTACTTTAACAATTCCCA
mSat-HP-Forward GGAAAATTTAGAAATGTTTAATGTAG
mSat-HP-Revers AACAAAAAAACTAAAAATCATAAAAA
MuERVL-HP-Forward TAAGGGTTAGGTGGTAGTATTGAAT
MuERVL-HP-Revers CAAAAACCAAATAACAACATTAAAT
Afp-HP-Forward TTTTGTTATAGGAAAATAGTTTTTAAGTTA
Afp-HP-Revers AAATCACAAAACATCTTACCTATCC
Ttc25-HP-Forward TGAAAGAGAATTGATAGTTTTTAGG
Ttc25-HP-Revers AAAACAAAAATCTATTCCATCACTC
Zim3-HP-Forward TTTATTTATTTGTGTGTGGTTTTTG
Zim3-HP-Revers CACATATCAAAATCCACTCACCTAT
Snrpn-HP-Forward AGAATTTATAAGTTTAGTTGATTTTTT
Snrpn-HP-Revers TAATCAAATAAAATACACTTTCACTACT

sequences we determine the states of each cytosine which allows us to calculate all possible measurement
errors for each time point and each genomic region. For example: 5hmC should be converted after oxBS
treatment to 5fU and will after sequencing seen as T. We check for each sequenced hairpin molecule
the state of the 5hmC position which can be either C or T. We divide then the number of T by the
total number of T and C at this position to get the conversion error of 5hmC during oxBS treatment.
The conversion error for cytosine and 5mC is calculated in the same way. For Snrpn we had to use
a hairpin linker without 5mC or 5hmC and could therefore not calculate the conversion errors for this
sample probably. However, to correct for more general errors we used the mean conversion error of all
other loci. In addition table C and table D give the primer sequences and the corresponding reference
sequence for each regions respectively.
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IAP

TGTCACTCCCTGATTGGCTGCAGCCCATCGGCCGAGTTGACGTCACGGGGAAGGCAGAGCACATGGAGTAGAGAACCACCCTC

GGCATATGCGCAGATTATTTGTTTACCACTNAGGGMCCATDDDDDDDDATGGGHCCTAAGTGGTAAACAAATAATCTGCGCAT

ATGCCGAGGGTGGTTCTCTACTCCATGTGCTCTGCCTTCCCCGTGACGTCAACTCGGCCGATGGGCTGCAGCCAATCAGGGAG

TGACA

L1mdA

TCCAATCGCGCGGAACTTGAGACTGCGGTACATAGGGAAGCAGGCTACCCGGGCCTGATCTGGGGCACAAGTCCCTTCCGCTC

GACTCGAGACTCGAGCCCCGGGCTACCTTGCCAGCAGAGTCTTGCCCAACACCCGCAAGGGCCCACACGGGACTCCCCACGGG

ACCCTNAGGGMCCATDDDDDDDDATGGGHCCTNAGGGTCCCGTGGGGAGTCCCGTGTGGGCCCTTGCGGGTGTTGGGCAAGAC

TCTGCTGGCAAGGTAGCCCGGGGCTCGAGTCTCGAGTCGAGCGGAAGGGACTTGTGCCCCAGATCAGGCCCGGGTAGCCTGCT

TCCCTATGTACCGCAGTCTCAAGTTCCGCGCGATTGGATTGGGGCAGGCACTGTGATCCACTC

L1mdT
CCCGGGACCAAGATGGCGACCGCTGCTGCTGTGGCTTAGGCCGCCTCCCCAGCCGGGTGGGCACCTGT

CCTCCGGAGGGMCCATDDDDDDDDATGGGHCCTCCGGAGGACAGGTGCCCACCCGGCTGGGGAGGCGG

CCTAAGCCACAGCAGCAGCGGTCGCCATCTTGGTCCCGGG

mSat

GGAAAATTTAGAAATGTTTAATGTAGGACGTGGAATATGGCAAGAAAACTGAAAATCATGGGAAATGA

GAAACATCCACTTGTCGACTTGAAAAATGACGAAATCACTAAAAAACGTGAAAAATGAGAAATGCACA

CTGAAGGWCGGGMCCATDDDDDDDDATGGGHCCGWCCTTCAGTGTGCATTTCTCATTTTTCACGTTTT

TTAGTGATTTCGTCATTTTTCAAGTCGACAAGTGGATGTTTCTCATTTTTTATGATTTTTAGTTTTTT

TGTT 

MuERVL

CGCCCGAGACAAGGTGATTCTAGTTATTATAATGGACAGCGTAGACAAAAGAATGTTTATAATAACAT

ACCCAGTAATGGTCAGCACAGGAGAGGTGAAATTTATAATGGCATGACTCGGTTGGWCGGGMCCATDD

DDDDDDATGGGHCCGWTTCAACCGAGTCATGCCATTATAAATTTCACCTCTCCTGTGCTGACCATTAC

TGGGTATGTTATTATAAACATTCTTTTGTCTACGCTGTCCATTATAATAACTAGAATCACCTTGTCTC

GGGCG 

Afp

TTTTGTTATAGGAAAATAGTTTTTAAGTTACAAAGCATCTTACCTATCCCAAACTCATTTTCGTGCAA

TGCTTTGGACGCAGCGAAATGTAGCAGGAGGATGAGGGAAGCGGGTGTGATCCACTTCATGGCTGCTG

GTTCCTTCACCGCAGGCAGTGCTGGAAGTGGGATGTTTCGGGGMCCATDDDDDDDDATGGGHCCCGAA

ACATCCCACTTCCAGCACTGCCTGCGGTGAAGGAACCAGCAGCCATGAAGTGGATCACACCCGCTTCC

CTCATCCTCCTGCTACATTTCGCTGCGTCCAAAGCATTGCACGAAAATGAGTTTGGGATAGGTAAGAT

GtTTTGTGATTT

Ttc25

CCAGTAGATCCTCAGCTGGGGGCAGGGATCTATTCCATCACTCCCCTTCCGTGTCGGGATTTCGTGCA

GCTCAGACGGGTCCAAGTCTTACACAAGCTGTCCTAACTGCTGTGCGTTTATATAACAACTACCCGGT

TGTGTTTAGAAAACACTGTTTTCGGGGMCCATDDDDDDDDATGGGHCCCGAAAACAGTGTTTTCTAAA

CACAACCGGGTAGTTGTTATATAAACGCACAGCAGTTAGGACAGCTTGTGTAAGACTTGGACCCGTCT

GAGCTGCACGAAATCCCGACACGGAAGGGGAGTGATGGAATAGATCCCTGCCCC 

Zim3

CCCGGCCACCATAGTCGGATTATCCGTGGGCGGGGTGAGATGGACGGAGCGCCTTGCAGACCTCAGGA

AAACCTCCCCACGCCTGTCCGGCCTTGGCTTGGTGACAGGGAAACTGGCTGGACTCGGGGMCCATDDD

DDDDDATGGGHCCCGAGTCCAGCCAGTTTCCCTGTCACCAAGCCAAGGCCGGACAGGCGTGGGGAGGT

TTTCCTGAGGTCTGCAAGGCGCTCCGTCCATCTCACCCCGCCCACGGATAATCCGACTATGGTGGCCG

GGCAAGGACCACAC 

Snrpn

AGAATTTACAAGTTTAGTTGATTTTTTTCGCTCCATTGCGTTGCAAATCACTCCTCAGAACCAAGCGT

CTGGCATCTCCGGCTCCCTCTCCTCTCTGCGCTAGTCTTGCCGCAATGGCTCAGGTTTGTCGCGCGGC

TCCCTACGCATGGGGCCTADDDDDDDDTAGGCCCCATGCGTAGGGAGCCGCGCGACAAACCTGAGCCA

TTGCGGCAAGACTAGCGCAGAGAGGAGAGGGAGCCGGAGATGCCAGACGCTTGGTTCTGAGGAGTGAT

TTGCAACGCAATGGAGCGAGGAAGGTCAGCTGGGCTTGTGGATTCTAGTAGTGAAAGTGTATTTTATT

TGATTA

Table D: Reference Sequences used for 5mC and 5hmC analysis; M = 5mC, H = 5hmC
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